论文导读:生物处理是常用的制浆造纸废水处理技术,已被许多工厂采用。上海新伦造纸厂采用SRB技术进行废水处理并实现达标排放。生物法处理制浆造纸废水具有效率高、成本低、二次污染少等优点,今后随着造纸工业和生物技术的迅猛发展以及对环境质量要求的提高,生物处理技术必将在制浆造纸工业废水处理中得到更广泛的应用,研究高效、低耗、技术简单的制浆造纸废水生物处理技术是一个非常有前途的课题。
关键词:生物技术,制浆造纸废水,废水处理
制浆造纸工业对环境所造成的污染问题日益突出,其废水排放量占全国工业废水排放总量的10%左右,污染严重,需要二次处理。随着国家对环境保护的重视以及民众环保意识的不断提高,制浆造纸行业已将降低有害物质作为重要课题。生物处理是常用的制浆造纸废水处理技术,已被许多工厂采用。该技术的原理是利用厌氧和好氧微生物将废水中的溶解性有机物分解为二氧化碳和水等稳定的无机物,实现COD去除,达到净化水体的目的。根据参与作用的微生物种类和供氧情况,分为好氧生物处理和厌氧生物处理及好氧厌氧组合处理三大类。生物处理方法运行费用低廉,与其他方法组合可以大大提高造纸废水的处理效率。
1.好氧生物处理法
好氧生物处理法即在有氧条件下,好氧微生物(主要是好氧菌)以水中的多种有机污染物作为生长、繁殖和新陈代谢等生命活动的物质与能量来源,同时达到去除BOD的方法。根据好氧微生物在水体中和工作方式不同,可分为活性污泥法和生物膜法两类。
1.1 活性污泥法
经初次沉淀后的废水与由二次沉淀池来的回流污泥在曝气池起端进入池内,通过扩散或机械曝气进行充分混合与曝气,并通过活性污泥的吸附、絮凝和氧化作用去除废水中的有机物。该法适用于处理要求高而水质较稳定的废水。
由于普通活性污泥法曝气时间比较长,当活性污泥继续向前推进到曝气池末端时,废水中有机物已几乎被耗尽,污泥微生物进入内源代谢期,它的活动能力也相应减弱,因此在沉淀池中容易沉淀,出水中残剩的有机物数量少。处于饥饿状态的污泥回流入曝气池后又能够强烈吸附和氧化有机物,所以普通活性污泥法的BOD和悬浮物去除率都很高,达到90~95%左右。
普通活性污泥法也有它的不足之处,主要是:①对水质变化的适应能力不强;②所供的氧不能充分利用,曝气池相对庞大、占地多、能耗费用高。有研究表明通过活性污泥工艺改良,可以明显改善生物系统污泥沉降性能及处理效果。
(1)SBR工艺
SBR(Sequencung Batch Reactors)是近年来在国内外广泛重视和研究日趋增多的一种污水生物处理新技术。SRB反应器的运行通常包括5个阶段:①进水阶段——加入基质;②反应阶段——基质降解;③沉淀阶段——泥水分离;④排放阶段——排上清液;⑤闲置阶段——活性恢复。这5个阶段都在曝气池内完成,从第一次进水到第二次进水称为一个工作周期。
SRB每个工作周期中各个阶段的运行时间、运行状态可以根据污水性质、排放规律与出水要求等进行调整。其操作简单,应用灵活,经济可行,能有效地去除常规活性污泥法难以去除的污染物,并能有效地克服活性污泥法污泥膨胀等问题。甲醇去除率达100%,COD去除率88%。据某些专家估算,SRB法投资运行成本要比常规活性污泥法节省30%。加拿大已成功应用SRB技术处理造纸厂多种废水;上海新伦造纸厂采用SRB技术进行废水处理并实现达标排放。
(2)HCR工艺
HCR(High Performance Compact Reactor) 是好氧生物处理技术的一个飞跃,它融合了当今的高速射流曝气、物相强化传递、紊流剪切等技术,并具有深井曝气和流化污泥床的特点。因此,其空气氧的转化率高,反应器的容积负荷大,水力停留时间短,是当前为西方国家所广泛接受的一种高效好氧生物处理方法。
HCR系统主要包括:集成反应器、两相喷头、沉淀池以及配套的管路和水泵等。集成反应器为圆形容器,其外筒两端被封闭,连接着各种管道;内筒两端开口,两相喷头安装在反应器上部的正中央。循环水泵提升高压水流经喷头射入反应器,由于负压作用同时吸入大量空气。水流和气流的共同作用又使喷头下方形成高速紊流剪切区,把吸入的气体分散成细小的气泡。富含溶解氧的混合污水经导流筒达到反应器底部后,又向上返流形成环流,再经剪切向下射流,如此循环往复运行。于是,污水被反复充氧,气泡和微生物菌团被不断剪切细化,并形成致密细小的絮凝体。
据研究表明纸厂废水采用HCR工艺处理,其中悬浮物去除率和脱色率均在95%以上,BOD和COD的去除率也都在80%以上,其主要运行效果参数与传统活性污泥法比较得出,HCR工艺在充氧速率、容积负荷、污泥负荷、沉淀池表面负荷、剩余污泥产率、水力停留时间等方面都具有明显优势。
HCR工艺存在的问题:一是能耗,当污水 COD去除率在80%及其以下时,所需能耗低且效益好;如果COD的去除率要求过高,其能耗就直线升高。因此,在实际工作中也不能盲目地选用HCR工艺。第二个问题是泡沫,HCR在处理某些废水时,也和常规好氧工艺一样会产生泡沫,设计时必须考虑这一因素。
1.2 生物膜法
生物膜法是一大类生物处理法的总称,共同的特点是微生物附着在介质(滤料)表面上,形成生物膜,污水同生物膜接触后,溶解的有机物被微生物吸附转化为H2O、 CO2、 NH3和微生物细胞物质,污水得到净化,所需氧气一般直接来自大气,生物膜法的处理效果和活性污泥法的处理效果差不多,与活性污泥法相比,其产生的污泥膨胀和剩余污泥量少,以及占地少和运行管理简便等优点。
目前采用生物膜技术的工艺也很多,常用的有生物滤池、生物转盘、接触氧化法以及生物流化床或膨胀床等多种工艺,本论文主要介绍一下接触氧化法以及生物流化床。
(1)生物流化床法
生物流化床是70年代开发的一种新型生物膜法处理工艺;以比重大于1的细小惰性颗粒如砂、焦碳、陶粒、活性炭等为载体;废水以较高的上升流速使载体处于流化状态;生物固体浓度很高,传质效率也很高,是一种高效的生物处理构筑物。
生物流化床具有以下优点:① 生物固体浓度高(10~20g/l),因此容积负荷较高(7~8kgBOD5/m3.d以上),水力停留时间可大大缩短,基建费用较小;② 无污泥膨胀或其它生物膜法中的滤料堵塞;③ 能适应不同浓度范围的废水,能适应较大的冲击负荷;④ 由于容积负荷和床体高度较大,占地面积较小。这些优点使它越来越受到水处理界的重视,目前已在生活污水和多种工业废水的处理上得到应用。近年来,内循环生物流化床研究得较多,还有人把流化床反应器与膜分离技术结合起来,建立了好氧流化床膜反应器,处理出水水质较高。
(2)生物接触氧化法
生物接触氧化法是一种介于活性污泥法与生物膜法之间的生物处理工艺。兼有活性污泥法与生物膜法优点,其机理是在曝气反应池内设置填料,池内既有活性污泥又有生物膜,形成密集的生物群体,较多的增加了废水与生物接触的面积,连续曝气和生物膜的及时更新,增强了生物的活性。科技论文。生物接触氧化池底曝气对污水进行充氧,并使池体内污水处于流动状态,以保证污水同浸没在污水中的填料充分接触,避免生物接触氧化池中存在污水与填料接触不均的缺陷。生物接触氧化法中微生物所需的氧通过鼓风曝气供给,生物膜生长至一定厚度后,近填料壁的微生物由于缺氧而进行厌氧代谢,产生的气体及曝气形成的冲刷作用会造成生物膜的脱落,并促进新生物膜的生长,促进生物膜的新陈代谢,脱落的生物膜将随出水流出池外,废水中污染物在此过程中被微生物分解消耗,从而使废水得到净化处理。
生物接触氧化法具有以下特点:①由于填料比表面积大,池内充氧条件良好,池内单位容积的生物固体量较高,故生物接触氧化池具有较高的容积负荷;②由于生物接触氧化池内生物固体量多,水流完全混合,故对水质水量的骤变有较强的适应能力;③剩余污泥量少,不存在污泥膨胀问题,运行管理简便;④处理能力高,处理效果稳定。科技论文。
2.厌氧生物处理法
2.1 厌氧生物处理废水的基本原理
厌氧发酵处理的基本原理是将溶解在废水中的有机物,通过微生物作用使其转化成为生物气体,主要成分为甲烷,可作为工厂燃料燃烧以产生热量加以利用。
由于一般处理废水方法费用较高,特别是好氧发酵的动力消耗大,而且还要花费很多费用来处理生物污泥;而在厌氧生物处理过程中,复杂的有机化合物被降解和转化为简单、稳定的化合物,同时释放能量,其中大部分能量以甲烷的形式出现。厌氧生物处理是一种有效、简单、费用低廉的低成本处理技术,是将废水处理与能源回收相结合的一种技术;同时由于新的更加严格的环保法规对制浆和造纸工厂废水排放的限制,所以这些因素都促使制浆和造纸工厂采用厌氧处理废水。
2.2 厌氧生物处理废水的新工艺与技术
目前采用厌氧技术处理废水的工艺也很多,造纸业早使用的两种厌氧系统:厌氧接触工艺CSTR(continuous stirred tank)和上流式污泥床工艺UASB(Up-flow Anaerobic SludgeBed)。目前具有高传质效率和污泥浓度,高反应器负荷的具有代表的新型反应器有:流化床FB(Fluidised Bed)、膨胀颗粒污泥床EGSB(Expanded Granular SludgeBed)和内循环反应器IC(InternalCirculation reactiors)。下面就介绍一下UASB和内循环反应器IC两种厌氧生物处理废水的方法。
(1)UASB方法
在厌氧处理领域应用最为广泛的是UASB反应器,它是由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。
UASB的主要优点是:
①UASB内污泥浓度高,平均污泥浓度为20-40gVSS/1;②有机负荷高,水力停留时间短,采用中温发酵时,容积负荷一般为10kgCOD/m3.d左右;③无混合搅拌设备,靠发酵过程中产生的沼气的上升运动,使污泥床上部的污泥处于悬浮状态,对下部的污泥层也有一定程度的搅动;④污泥床不填载体,节省造价及避免因填料发生堵赛问题;⑤UASB内设三相分离器,通常不设沉淀池,被沉淀区分离出来的污泥重新回到污泥床反应区内,通常可以不设污泥回流设备。
主要缺点是:
①进水中悬浮物需要适当控制,不宜过高,一般控制在100mg/l以下;②污泥床内有短流现象,影响处理能力;③对水质和负荷突然变化较敏感,耐冲击力稍差。
UASB工艺近年来在国内外发展很快,应用面很宽,在各个行业都有应用,生产性规模不等。科技论文。实践证明,它是污水实现资源化的一种技术成熟可行的污水处理工艺,既解决了环境污染问题,又能取得较好的经济效益,具有广阔的应用前景。
(2)内循环反应器IC
内循环厌氧反应器(Internal Circulation Reactiors 简称IC)是由荷兰Paques公司于20世纪80年代中期在UASB反应器的基础上开发成功的高效厌氧反应器。它也存在厌氧细菌聚集形成的“颗粒污泥”,也是上流式颗粒污泥处理系统。废水在反应器中也是自下而上流动,污染物被细菌吸附并降解,净化过的水从反应器上部流出。事实上,IC反应器可以简单化地理解为两个上下组合在一起的UASB反应器,一个是下部的高负荷部分,一个是上部的低负荷部分。IC反应器与UASB的最大不同之处是,废水处理中由COD转化产生的生物气的引出分为两个阶段,下部产生的气体产生一个水和污泥的循环回流,由此引起的强烈的搅拌作用和高的上流速度,极大地改善了污染物从液相到颗粒污泥的传质过程,因此有极高的净化效率,这是内循环Internal Circulation reactiors一词的由来。
内循环(IC)厌氧反应器目前已经成功用于造纸工业废水处理,与UASB相比它具有以下优点:有更高的负荷和净化效率,进水有机负荷可超过普通厌氧反应器的3倍以上;占地面积小,其体积相当于普通反应器的1/4-1/3左右,大大降低了反应器的基建投资;抗低温能力强,IC反应器由于含有大量的微生物,温度对厌氧消化的影响变得不再显著和严重;具有缓冲pH的能力,内循环流量相当于第1厌氧区的出水回流,可利用COD转化的碱度,对pH起缓冲作用,使反应器内pH保持最佳状态,同时还可减少进水的投碱量;内部自动循环,不必外加动力,节省了动力消耗;出水稳定性好;启动周期短,IC反应器启动周期一般为1~2个月,而普通UASB启动周期长达4~6个月;沼气利用价值高,反应器产生的生物气纯度高,CH4为70%~80%,CO2为20%~30%,其它有机物为1%~5%,可作为燃料加以利用。
结论:
制浆造纸废水具有浓度高、水量大、色度深、含纤维悬浮物多、BOD和COD含量高等特点。生物法处理制浆造纸废水具有效率高、成本低、二次污染少等优点,今后随着造纸工业和生物技术的迅猛发展以及对环境质量要求的提高,生物处理技术必将在制浆造纸工业废水处理中得到更广泛的应用,研究高效、低耗、技术简单的制浆造纸废水生物处理技术是一个非常有前途的课题。
参考文献:
[1]李显,康蔡卫. 介绍了 HCR废水处理新技术的特点 [J].广东造纸,1997. 4:24 - 26.
[2]万金泉.废纸造纸及其污染控制[M].北京:中国轻工业出版社,2004.
[3] 贺延龄.废水的厌氧生物处理[M].中国轻工业出版社,1999.
[4]杨玲,李文俊,高焱仁.制浆造纸废水生物技术处理及其研究进展. 环境保护,2008.1:30-32.
中国论文网(www.lunwen.net.cn)免费学术期刊论文发表,目录,论文查重入口,本科毕业论文怎么写,职称论文范文,论文摘要,论文文献资料,毕业论文格式,论文检测降重服务。