古罗马数学发展史,数学发展史推荐书

中国论文网 发表于2024-01-28 23:34:12 归属于历史论文 本文已影响293 我要投稿 手机版

       

今天中国论文网小编为大家分享毕业论文、职称论文、论文查重、论文范文、硕博论文库、论文写作格式等内容。

展开全部数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。 第二时期 第一时期,初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成现在中学数学的主要内容。这个时期从公元5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:

Www.KucunJie.com

算数、几何、代数、三角。 第三时期 变量数学时期。变量数学产生于17世纪,大体上经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分【微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。】的创立。第四时期 现代数学。现代数学时期,大致从19世纪上半叶开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。

宋元朝数学发展史

  我国古代数学经数千年的发展,到宋元时达到了高峰期。而元代更是这种高峰期的顶峰状态。如中国自然科学史研究室数学史组在其《宋元数学综述》一文里说:“13世纪下半纪(主要指元代)特别值得我们注意。如果说宋元数学是以筹算为中心内容的中国古代数学发展的高潮,那么13世纪下半纪正就是这个高潮的顶峰。”我国已故着名数学史专家钱宝琮先生也说:“中国数学以元初为最盛,学人蔚起,着作如林,于数学史上放特殊光彩。”可见元代数学在我国数学史上所占的重要地位。

  元代数学之所以达到我国古代数学的高峰期,其主要标志是涌现出了一批着名数学家及其着作,提出并解决了一些数学方面的高难问题,取得了杰出成就。

  元代着名数学家有李冶、朱世杰、蒙哥等人。李冶着有《测圆海镜》12卷、《益古演段》3卷;朱世杰着有《算学启蒙》3卷、《四元玉鉴》3卷;蒙哥对古希腊伟大数学家欧几里得的《几何原本》有研究。李冶提出了立方程的方法(即天元术),朱世杰提出了多元高次联立方程的解法(即四元术)及垛积术与招差法。这些都是具有世界性影响的成就。

  从数学本身发展的内在规律来看,元代数学继承了前代成果并解决了前代所未解决而又亟需解决的问题。如关于“天元术”和“四元术”的发展问题。在我国古代着名的数学着作《九章算术》(约公元1世纪)的开方法中,“借一算”已有未知数X的含意,唐代王孝通在立方程过程中也用到了多项式的计算。到了宋代数学家们把“增乘开方法”由开平方、开立方推广到开任意高次方之后,“天元术”的形成就剩最后一跃了。金末元初的李冶完成了这最后一跃。当“天元术”的问题解决后,人们自然而然地又会提出解决高次联立方程的问题。朱世杰“四元术”的提出很好地解决了这一问题。“四元术”用上下左右的不同位置来表示高次的四元式,最多不能超过四元,所以可以说筹算在这方面被发展到顶点了。

  另外,数学的发展还与其它学科有密切的关系。如“大衍求一术”(一次同余式解法)和高次的招差法公式与天文历法的推算就密切相关。天文历法的推算需用高次招差法这一数学学科的方法,只有当人们从数学方面解决了一系列的高阶等差级数求和问题(各种垛积问题)之后才能最后完成这一方法,天文历法推算的需要向数学学科提出了问题,数学学科问题的解决又促进了天文历法的发展。所以说,元代的天文历法与数学均达到了我国古代的高峰期,是与二者相辅相成,互相促进分不开的。

  总之,元代数学的发展之所以达到我国古代数学发展的高峰期甚至巅峰状态,是由当时特定的社会政治经济环境及数学学科本身的发展规律所决定的。

wWw.lunwen.net.Cn中国论文网免费学术期刊论文发表,目录,论文查重入口,本科毕业论文怎么写,职称论文范文,论文摘要,论文文献资料,毕业论文格式,论文检测降重。

返回历史论文列表
展开剩余(