由函数单调性利用导数求参数,导数研究函数的单调性综合问题

中国论文网 发表于2024-03-29 20:33:24 归属于经济论文 本文已影响279 我要投稿 手机版

       今天中国论文网小编为大家分享毕业论文、职称论文、论文查重、论文范文、硕博论文库、论文写作格式等内容.                    

摘 要:单调性是函数的一种非常重要的性质,它反映了函数值随自变量增大而增大或减小的变化规律.本文对函数的单调性进行变式研究,得出了一些有用的结论。

关键词:函数;单调些;导数 一、函数单调性的判断  (一)判断某函数在某区间上具有某种单调性,常用的是定义法即根据定义来判断。  (二)运用简单函数的性质直接退出所求函数的单调性,注意以下几个性质的运用:1、函数y=-与y=的单调性相反;2、函数y=与y=的单调性相反;3、复合函数的单调性取决于构成复合函数的两个函数的单调性,遵循以下口诀“同增同减为增,一增一减为减”。

kucunjie.com

如函数y=就是由两个函数y=和u=-2x复合而成,其中函数y=在定义域上单调递增,函数u=-2x在(-,1)上单调递减,在(1.+)上单调递增,则函数y=在(-,1)上单调递减,在(1.+)上单调递增。4、若判断函数在某区间上不是单调函数,只要举一反例说明即可,例如,要说明函数y=x+在(0,+)上不是增函数,可取特殊值x=时,y=;x=1时,y=2来否定。二、变式研究 定理1 对于区间上的任意两点,充要条件是在上恒成立且在上的根是离散的。  证明 (必要性)当时,,即。令,则在上单调递增,从而在上恒成立且在上的零点是离散的,即在上恒成立且在上的根是离散的。(充分性)构造函数。  因为在上恒成立且在上的根是离散的,即在上恒成立且在上的零点是离散的,所以在上单调递增。从而即例 已知若函数图像上的任意(不同)两点的连线的斜率小于1,求实数a的取值范围:解 设函数图像上的任意(不同)两点为,且。根据两点连线的斜率,由定理1可知在R上恒成立,即在R上恒成立。所以,可得

  中国论文网(www.lunwen.net.cn)免费学术期刊论文发表,目录,论文查重入口,本科毕业论文怎么写,职称论文范文,论文摘要,论文文献资料,毕业论文格式,论文检测降重服务。

返回经济论文列表
展开剩余(