3.2 阈值的确定 为了检测出缺陷的边缘,进行图像分割(缺陷子图像的提取),灰度分割阈值t的选择相当重要。在对图像进行了二值化,对于直方图双峰明显, 谷底较深的图像, 双峰法和迭代法,这两种方法可以较快地获得满意结果。双峰法实现简单, 要根据直方图特征设定一个合理的峰宽; 迭代法运算稳定, 但运算量大; 简单统计法避免了分析灰度直方图, 因此适应面广, 实现也很简单。但是对于直方图双峰不明显,或图像目标和背景比例差异悬殊, 此两种方法就不能完全提取出重要的信息,使处理出的图像效果都不是非常理想。最大类间方差法( otsu法)(对图像, 设t为前景与背景的二值化阈值, 前景点数占图像比例为w0, 平均灰度为u0; 背景点数占图像比例为w1, 平均灰度为u1。图像的总平均灰度为: u=w0*u0+w1*u1。从最小灰度值到最大灰度值遍历t, 当t使得值b=w0* (u0- u) 2+w1* (u1- u) 2最大时, t即为二值化的最佳阈值。对最大类间方差法可作如下理解: 该式实际上就是类间方差值, 阈值t二值化出的前景和背景两部分构成了整幅图像, 而前景取值u0, 概率为w0, 背景取值u1, 概率为w1, 总均值为u, 根据方差的定义即得该式。因方差是灰度分布均匀性的一种度量,方差值越大,说明构成图像的两部分差别越大,当部分目标错分为背景或部分背景错分为目标都会导致两部分差别变小, 因此使类间方差最大的二值化意味着错分概率最小。)处理出的图像边缘比较清晰, 算法也比较稳定。对于不同光照条件下得到的图像, 最大类间方差法处理出的图像边缘一致性最好, 重复性边缘定位基本可以控制在一个像素范围内。最大类间方差法致命的缺陷是当目标物与背景灰度差不明显时, 会出现无法忍受的大块黑色区域, 甚至会丢失整幅图像的信息。为了解决这个问题, 有人提出了灰度拉伸的增强最大类间方差法。这种方法的原理其实就是在最大类间方差法的基础上通过增加灰度的级数来增强前后景的灰度差, 从而解决问题。灰度增加的方法是用原有的灰度级乘上同一个系数,从而扩大灰度的级数, 选择一个比较合适的拉伸系数改进最大类间方差法后处理图像效果会更好, 因为图像的边缘会随着图像拉伸而变化, 不合适的拉伸系数会破坏图像的边缘。3.3 缺陷轮廓提取 对预处理过的图像进行图像特征抽取,所抽取出的象素点可能粗细不均,为了突出轮廓线的形状特点和后续轮廓提取,则需要进行轮廓细化。这里给出一种简单的细化算法,所谓细化就是从原来的图像中去掉一些点,但仍要保持原来的形状,实际上是保持原来的骨架。判断一个点是否删去可根据它邻域内的八个相邻点来判断。具体的细化算法如图2:一幅图像中的一个3*3 区域,对各点标记名称a1,a2,…a9,其中a1位于中心。如果a1= 1即黑点,且下面四个条件同时满足,则删除ai。 (1)2≤nz(a1) ≤6 (2)z0(a1)=1 (3)a2*a4*a8=0 or z0(a1) ≠1 (4)a2*a4*a6=0 or z0(a4) ≠1(1)标记点和邻点(2)几种不可删除的情况图2 细化示意图 对图像中的每一个点重复这一步骤,直到所有的点都不可删除为止。 轮廓坐标提取采用二值图像轮廓跟踪的算法提取轮廓坐标。首先找到第一个边界象素,按照从左到右,从下到上的顺序搜索,找到第一个黑点一定是最左下方的边界点,记下该点坐标。以该边界点为起始点,沿顺时针方向环绕整个图像一圈找到所有边界点。由于边界是连续的,所以每一个边界点都可以用这个边界点对前一个边界点所张的角度来表示。因此可以使用下面的跟踪准则:从第一个边界点开始,定义初始的搜索方向为沿左上方;如果左上方的点是黑点,则为边界点,否则顺时针旋转45度。这样一直到找到第一个黑点为止。然后把这个黑点作为新的边界点,在当前搜索方向的基础上逆时针旋转90度,继续用同样的方法继续搜索下一个黑点,直到返回最初的边界点为止。每搜索到一个边界点就记下该点坐标,这样,轮廓坐标数据就得到了。 4 根据已知的轮廓,计算轮廓内的象素点,再利用已知标定线的与象素的关系求出实际面积。5 结束语 本文讨论了在高精度ccd相机的支持下和计算机图像处理理论基础上,提出柱体表面缺陷的检测方法,给讨论了柱体曲面上的区域面积检测的相关技术,设计的测量方法解决了摄像机标定、因曲面引起的各点物距不同所造成的影响等问题,能自动、高精度地完成特定面积的检测。这种测量方法能很好的利用ccd相机与计算机的高度结合,消除了个人主观误差,保证了面积测量的精确度。以后将就提高精确度、非典型曲面面积检测做进一步的研究工作。参考文献[1]李芳.固体火箭发动机包覆层状态识别的研究[d].硕士学位论文,北京:北京航空航天大学,2001[2]陈鲤江,刘铁根,李钢基于ccd摄影测量的摩托车前照灯配光性能测试研究,光电子技术与信息2006.5.19[3]乐静,郭俊杰,朱虹,张涛,李锋。回转曲面上特定区域面积的图像检测方法,西安理工大学学报2003.l.19
中国论文网(www.lunwen.net.cn)免费学术期刊论文发表,目录,论文查重入口,本科毕业论文怎么写,职称论文范文,论文摘要,论文文献资料,毕业论文格式,论文检测降重服务。